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Abstract
A semi-analytic sharp-boundary model of a nonaxisymmetric vertical displacement event (VDE) in a large aspect-
ratio, high-beta (i.e. β ∼ ε), vertically elongated tokamak plasma is developed. The model is used to simulate
nonaxisymmetric VDEs with a wide range of different plasma equilibrium and vacuum vessel parameters. These
simulations yield poloidal halo current fractions and toroidal peaking factors whose magnitudes are similar to those
seen in experiments, and also reproduce the characteristic inverse scaling between the halo current fraction and the
toroidal peaking factor. Moreover, the peak poloidal halo current density in the vacuum vessel is found to correlate
strongly with the reciprocal of the minimum edge safety factor attained during the VDE. In addition, under certain
circumstances, the ratio of the net sideways force acting on the vacuum vessel to the net vertical force is observed to
approach unity. Finally, the peak vertical force per unit area acting on the vessel is found to have a strong correlation
with the equilibrium toroidal plasma current at the start of the VDE, but is also found to increase with increasing
vacuum vessel resistivity relative to the scrape-off layer plasma.

1. Introduction

The tokamak [1] is generally regarded as the magnetic
confinement concept that is most likely to demonstrate
controlled thermonuclear fusion in the near future. However,
in order to attain this goal, a tokamak must operate
simultaneously at high plasma pressure (which translates to
good reactor economy), high plasma current (which translates
to good energy confinement) and an edge safety-factor greater
than 2 (which translates to good kink stability). Such operation
necessitates that the plasma poloidal cross-section be highly
elongated in the vertical direction. Unfortunately, an elongated
tokamak plasma is unstable to toroidally symmetric vertical
displacements [2]. In practice, it is possible to control this
so-called vertical instability by means of a feedback system
that employs an externally generated poloidal magnetic field
to neutralize the plasma motion [3]. However, there are
circumstances in which such a control system can fail: for
instance, if a large amplitude internal plasma disturbance
causes a sudden change in the plasma pressure or inductance,
if the growth rate of the instability becomes larger than the
bandwidth of the controller, or if the size of the required control
field exceeds the capabilities of the power supply. Failure
of the vertical feedback system allows the plasma to move
upwards, or downwards, and eventually strike the vacuum
vessel, triggering a rapid quench of the plasma pressure and
current. This scenario is known as a vertical displacement
event (VDE) [4–10].

As a vertically unstable tokamak plasma interacts with the
vacuum vessel its outermost regions are scraped off, forming
a so-called halo in which magnetic flux-surfaces are occupied
partly by a relatively cool scrape-off layer (SOL) plasma, and
partly by a section of the vacuum vessel. The comparatively hot
main plasma is contained within the last closed magnetic flux-
surface (LCFS), which is defined as the outermost flux-surface
that does not intersect the vacuum vessel. The poloidal cross-
section of the LCFS gradually shrinks in size as the vertical
instability develops, and more and more of the main plasma is
scraped off by the vacuum vessel. However, if this shrinkage
takes place faster than the characteristic L/R time of the main
plasma (i.e. faster than the toroidal plasma current can decay)
then it causes a reduction in the safety factor, qp, at the LCFS.
Moreover, such a reduction inevitably triggers a toroidally
asymmetric kink instability when qp falls significantly below
2 [11]. (An alternative hypothesis, not considered in this paper,
is that the toroidal asymmetry seen in VDEs is caused by an
intrinsic plasma–wall instability [12].)

The changing magnetic flux linked by the halo during a
VDE induces electric currents, known as halo currents, that
flow around the halo—partly through the SOL plasma, and
partly through the vacuum vessel [8, 13]. (In this paper, it is
assumed that halo current loops generally make a great many
poloidal and toroidal circuits of the plasma, but eventually
close on themselves. Current in such loops can only be driven
inductively, since the electrostatic potential difference around
a closed circuit is identically zero.) Now, the SOL plasma is
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subject to strong cooling via direct parallel heat transport to
the vacuum vessel, and thus has a comparatively low pressure,
which implies that it is essentially force-free. Consequently,
halo currents are constrained to flow parallel to magnetic
field lines in the SOL plasma. However, there is no such
restriction when the currents flow through the rigid vacuum
vessel. Indeed, we would generally expect halo currents to flow
through the vessel along the path of least electrical resistance
(especially, in the case in which the vacuum vessel is much
more resistive than the SOL plasma.) This implies that the
path taken by halo currents through the vacuum vessel is
predominately poloidal.

The interaction of the poloidal component of the
halo current flowing through the vacuum vessel with the
predominately toroidal magnetic field of a tokamak produces
a vertical force of sufficient magnitude to cause a measurable
vessel displacement. Halo current forces are a serious issue
in the design of the ITER tokamak [14] because the scaling
of such forces with machine size is extremely unfavourable
for large devices. Of particular concern is the fact that when
the kink mode becomes unstable, in addition to the vertical
mode, during a VDE, the distribution of halo currents—and, by
implication, the distribution of halo current forces—becomes
strongly toroidally asymmetric. This phenomena leads to
the alarming possibility of halo current forces becoming
concentrated in a relatively small section of the vacuum
vessel. Such a concentration could very easily generate a force
density of sufficient magnitude to seriously damage the vessel.
Another major concern is the generation of a net sideways force
on the vacuum vessel by a nonaxisymmetric halo current force
distribution.

The aim of this paper is to derive an essentially analytic
model of a nonaxisymmetric VDE in a vertically elongated
tokamak plasma. The model in question is a major extension
of the simple model presented in [15], and employs a large
aspect-ratio, high-beta (i.e. β ∼ ε, rather than β ∼ ε2),
sharp-boundary plasma equilibrium [12, 16, 17] in which the
perturbed edge pressure balance is modified in response to the
halo current force exerted on the section of the vacuum vessel
that is in direct electrical contact with the main plasma [15, 18].
The angular boundaries of this plasma-touching section are
determined self-consistently from the calculated amplitudes of
the n = 0 (vertical) and n = 1 (kink) plasma displacements.
(Here, n is the toroidal mode number). Furthermore, the halo
current is determined from circuit analysis [8, 13], rather than
relying on the simplistic assumption that the plasma current
is passively convected into the vacuum vessel [19]. The latter
assumption is unrealistic because, in reality, when the plasma
reaches the vacuum vessel it is neutralized—i.e. there is
no physical penetration of plasma into the vessel. Finally,
the determination of the inductive voltages driving the halo
current makes use of the calculated linear growth rates of the
n = 0 and n = 1 modes [12, 15–20], instead of assumed
growth rates [8, 13].

2. Plasma equilibrium

2.1. Coordinates

It is convenient to define the right-handed orthogonal
curvilinear coordinates µ, ν, φ. Here, the ‘radial’ coordinate

µ labels a set of nested axisymmetric toroidal surfaces, with
µ = 0 corresponding to the innermost (zero volume) surface,
and µ = ∞ to the outermost (infinite volume) surface.
Furthermore, ν is an angle-like variable in the poloidal plane,
with ν = 0 and ν = π/2 corresponding to the outboard
midplane and top of the plasma, respectively. Finally, φ is
a conventional toroidal angle.

It is also convenient to define horizontal and vertical
Cartesian coordinates, x and z, respectively, in the poloidal
plane, where

x = a s (κ2 − 1)1/2 sinh µ cos ν, (1)

z = a s (κ2 − 1)1/2 cosh µ sin ν. (2)

Finally, it is helpful to define the fixed right-handed
Cartesian coordinates X, Y , Z, where

X = x cosφ, (3)

Y = x sin φ, (4)

Z = z. (5)

Let x = z = 0 correspond to the centroid of the
main plasma in the poloidal plane. Suppose that the main
plasma occupies the toroidal region µ ! µp, so that the last
closed magnetic flux-surface (LCFS) (i.e. the last flux-surface
occupied entirely by plasma) corresponds to µ = µp. Let
µp = tanh−1(κ−1), where κ > 1. The parametric equation of
the LCFS in the poloidal plane is thus

x = a s cos ν, (6)

z = κ a s sin ν. (7)

It follows that the poloidal cross-section of the LCFS is a
vertically elongated ellipse of elongation κ , horizontal semi-
axis s a, and vertical semi-axis κ s a. Furthermore, by varying
the dimensionless scale factor s from 1 to 0, we can simulate
the shrinkage of the LCFS cross-section as the plasma interacts
with the vacuum vessel during a VDE. For the sake of
simplicity, this shrinkage is assumed to take place at constant
plasma major radius, R. Note that a is the initial horizontal
semi-axis of the LCFS.

It is easily demonstrated that ∇µ · ∇ν = 0,
∇2µ = ∇2ν = 0, |∇µ| = |∇ν| = (a h)−1, and |∇φ| = R−1,
where

h(µ, ν) = s (κ2 − 1)1/2 (sinh2 µ + cos2 ν)1/2. (8)

Now, a general vector can be written

A = Aµ eµ + Aν eν + Aφ eφ, (9)

where eµ ≡ ∇µ/|∇µ|, etc. The following identities are
useful:

∇f ≡ (a h)−1 ∂f

∂µ
eµ + (a h)−1 ∂f

∂ν
eν + R−1 ∂f

∂φ
eφ, (10)

∇ · A ≡ (a h)−2 ∂(a h Aµ)

∂µ
+ (a h)−2 ∂(a h Aν)

∂ν
+ R−1 ∂Aφ

∂φ
,

(11)
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∇ × A ≡
[
(a h)−1 ∂Aφ

∂ν
− R−1 ∂Aν

∂φ

]
eµ

+
[
−(a h)−1 ∂Aφ

∂µ
+ R−1 ∂Aµ

∂φ

]
eν

+
[
(a h)−2 ∂(a h Aν)

∂µ
− (a h)−2 ∂(a h Aµ)

∂ν

]
eφ, (12)

∇2f ≡ (a h)−2 ∂2f

∂µ2
+ (a h)−2 ∂2f

∂ν2
+ R−2 ∂2f

∂φ2
, (13)

eµ · (eµ · ∇)A ≡ (a h)−1 ∂Aµ

∂µ
+ (a h)−2 ∂(a h)

∂ν
Aν . (14)

Furthermore, it can be demonstrated that

eX · eµ|µ=µp =
hp(0)

hp
cos ν cosφ, (15)

eZ · eµ|µ=µp =
hp(π/2)

hp
sin ν, (16)

where eX = ∇X/|∇X|, eZ ≡ ∇Z/|∇Z|, and

hp(ν) ≡ h(µp, ν) = s
[
1 + (κ2 − 1) cos2 ν

]1/2
. (17)

Here, hp(ν) is a dimensionless metric function which is defined
such that the length of a poloidal section of the plasma
boundary lying between ν and ν + dν is a hp(ν) dν.

2.2. Equilibrium pressure balance

For the sake of simplicity, all currents in the main plasma
are assumed to flow immediately inside the LCFS. In reality,
of course, the currents are distributed throughout the main
plasma. This approximation is only reasonable in situations
in which the stability of the vertical and kink instabilities
responsible for the VDE depends on the plasma elongation,
pressure and the edge-safety factor, but is not strongly affected
by current gradients within the plasma (since such gradients
are not captured in a sharp-boundary model). This is most
likely to be the case for strongly elongated, high-beta (i.e.
β ∼ ε, rather than β ∼ ε2) plasmas. Another disadvantage of
the sharp-boundary approach is that the plasma self-inductance
is constrained to take a fairly low value.

Let P be the uniform pressure within the main plasma, and
let B and B′ be the equilibrium magnetic fields in the regions
interior and exterior to the LCFS, respectively. It follows that

Bφ = Bı

1 + x/R
, (18)

B ′
φ = Bo

1 + x/R
, (19)

where Bı and Bo are constants. Since there are no internal
plasma currents, Bµ = Bν = 0. Moreover, B ′

µ = 0 and
B ′
ν ≡ Bp(ν) immediately outside the LCFS. Finally, making

use of equations (8), (11) and (12), ∇ · B′ = 0 yields

∂B ′
µ

∂µ

∣∣∣∣
µ=µp

= −(a hp)
−1 ∂(a hp Bp)

∂ν
, (20)

whilst ∇ × B′ = 0 gives

∂B ′
ν

∂µ

∣∣∣∣
µ=µp

= − (a hp)
−1 Bp

∂(a h)

∂µ

∣∣∣∣
µ=µp

= − s2 κ

h 2
p

Bp. (21)

Equilibrium pressure balance across the LCFS leads to the
relation [12, 15–17, 20]

P +
1

2µ0

(
Bı

1 + ε s cos ν

)2

= 1
2µ0

(
Bo

1 + ε s cos ν

)2

+
B 2

p

2µ0
,

(22)

where ε = a/R ( 1. This relation can also be written

β +

[(
Bı

Bo

)2

− 1

]
1

(1 + ε s cos ν)2
=

B 2
p

B 2
o

, (23)

where β = 2µ0 P/B 2
o is the toroidal plasma beta. Assuming

that β ∼ ε, Bo − Bı ∼ ε Bo, and B 2
ı /B 2

o − 1 + β = A ε2,
where A is an O(1) constant, we obtain

Bp

εBo
=

(
A + 2 s

β

ε
cos ν

)1/2

+ O(ε), (24)

Bo − Bı = β

2
Bo + O(ε2). (25)

Finally, the net toroidal plasma current is written

µ0 Iφ p =
∮

Bp a hp dν, (26)

whereas the magnetic winding number, or safety factor, on the
LCFS becomes

qp =
∮

εBo

Bp
hp

dν
2π

. (27)

Note that the adopted plasma equilibrium assumes the
high-beta ordering β ∼ ε. However, the equilibrium is
also consistent with the low-beta ordering β ∼ ε2 when
β̂ ≡ β/ε = 0.

3. Halo physics

3.1. Structure of Halo

The halo is a (radially) thin, annular, toroidal region situated
just outside the LCFS. Magnetic flux-surfaces in the halo are
occupied partly by force-free SOL plasma, and partly by a
section of the vacuum vessel that is in electrical contact with
the main plasma. This section is henceforth referred to as the
‘limiter’, and the rest of the vacuum vessel is referred to as
the ‘wall’. It is assumed that the limiter lies directly above the
main plasma, and is brought into electrical contact with it via
the action of an upward vertical instability.

It is helpful to define the ‘straight’ poloidal angle

θ(ν) = 1
qp

∫ ν

π/2

εBo

Bp
hp dν, (28)

where θ = 0 corresponds to ν = π/2. The angular equation
of an equilibrium magnetic field line in the halo is thus

dφ
dθ

= qp. (29)

Furthermore,

|∇θ |−1 = dν
dθ

|∇ν|−1 = a
Bp

εBo
qp. (30)
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Figure 1. Schematic diagram showing structure of halo.

Note that
θ ) c (ν − π/2) (31)

in the vicinity of θ = 0, and

Bp

Bo

∣∣∣∣
θ=0

= ε s

c qp
, (32)

where c = s/(A1/2 qp).
Let the angular boundaries of the limiter be

θ− ! θ ! θ+, (33)

and
φ− ! φ ! φ+, (34)

where θ± = ±π fθ and φ± = ±π fφ + qp θ . Here, fθ and fφ

(where 0 ! fθ ! 1 and 0 ! fφ ! 1) are the fractional angular
poloidal and toroidal coverages of the limiter, respectively.
Any toroidal asymmetry (i.e. fφ < 1) of the limiter boundaries
is due to the action of a nonaxisymmetric kink instability. For
the sake of simplicity, the limiter boundaries are assumed to
run either in the toroidal direction or parallel to equilibrium
magnetic field lines. See figure 1.

By definition, halo currents flow partly through the
SOL plasma, and partly through the limiter. Furthermore,
halo currents are required to flow parallel to equilibrium
magnetic field lines in the force-free SOL plasma, but can
flow in any direction in the rigid limiter. In the following,
our discussion is restricted to two fundamental classes of
halo current pattern. A general halo current pattern can be
formed from an appropriate linear combination of these two
patterns.

3.2. Class-1 halo currents

A class-1 halo current pattern is such that the current flows
parallel to magnetic field lines in the SOL plasma, but flows
poloidally in the limiter (in order to minimize the electrical
resistance of a halo current filament). Now, an ‘ergodic’ class-
1 halo current filament (i.e. a filament which only closes after
a great many poloidal turns) consists of three distinct types of

Figure 2. Schematic diagram of class-1 halo current pattern
showing type-a, -b and -c, poloidal turns.

poloidal turn. A type-a turn passes through the middle of the
limiter. A type-b turn runs entirely through the SOL plasma.
Finally, a type-c turn passes through both toroidal edges of the
limiter, and is completed by a toroidal leg which runs through
the limiter (in the +φ direction). (The toroidal leg is required in
order to obtain a complete mapping of current filaments from
θ = −π to θ = +π .) See figure 2. It is evident that the fraction
of poloidal turns which are of type-a is fa = fφ − qp fθ ,
whereas the fraction which are of type-b is fb = 1 − fφ , and
the fraction which are of type-c is fc = qp fθ . Moreover, the
change in φ associated with each type of turn is

)φa

2π
= qp (1 − fθ ), (35)

)φb

2π
= qp, (36)

)φc

2π
= qp (1 − fθ ) + fφ . (37)

Hence, the mean magnetic winding number of an ergodic class-
1 halo current filament is

qp 1 = fa

)φa

2π
+ fb

)φb

2π
+ fc

)φc

2π
= qp. (38)

Note that a class-1 halo current pattern is topologically
equivalent to one in which the halo current flows parallel to
magnetic field lines both in the limiter and the SOL plasma.
Hence, we would not expect a class-1 pattern to generate a force
on the limiter. Incidentally, in this paper, we are neglecting
‘resonant’ halo current filaments, which close after a few
poloidal turns, because such filaments are only important at
a relatively small number of special values of qp (particularly,
in the limit in which the vacuum vessel is much more resistive
than the SOL plasma).

Let w‖, wθ and wφ be the width (within a magnetic flux-
surface: i.e. at constant µ) of a given ergodic class-1 halo
current filament as it passes parallel to magnetic field lines
through the SOL plasma, poloidally through the limiter, and
toroidally through the limiter, respectively. Furthermore, let δ
be the radial (i.e. at constant θ and φ) thickness of the filament.
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Figure 3. Schematic diagram of class-2 halo current pattern
showing type-a, -b, and -c, poloidal turns.

It follows from geometry, and the fact that the filament is
bounded by magnetic field lines in the SOL plasma, that

wφ(θ) ) w‖(θ) = [Bp(θ)/Bp(0)] w0, (39)

wθ ) [Bo/Bp(0)] w0, (40)

where w0 is a constant. It is convenient to assume that
δ(θ) = [Bp(0)/Bp(θ)] δ0, where δ0 ( a is a constant. Note
that δ(θ) represents the radial thickness of both the SOL plasma
and the limiter/wall. Let ‖ 1, θ 1 and φ 1 be the filament
current density as it runs parallel to magnetic field lines through
the SOL plasma, poloidally through the limiter, and toroidally
through the limiter, respectively. Charge conservation yields
‖ 1 w‖ δ = θ 1 wθ δ = φ 1 wφ δ = const., which implies that
‖ 1 is constant, φ 1 ) ‖ 1, and θ 1 ) [Bp(θ)/Bo] ‖ 1.

3.3. Class-2 halo currents

An ergodic class-2 halo current pattern is similar to a class-1
pattern, except that a type-c poloidal turn is completed by a
toroidal leg which runs (in the −φ direction) through that part
of the wall lying between θ = θ− and θ = θ+, rather than
through the limiter. (As before, the toroidal leg is required in
order to obtain a complete mapping of current filaments from
θ = −π to θ = +π .) See figure 3. The fraction of poloidal
turns which are of type-a, -b and -c is the same as for class-1
patterns. Moreover, the change in φ associated with each type
of turn is also the same as for class-1 patterns, except that

)φc

2π
= qp (1 − fθ ) − (1 − fφ). (41)

Hence, the effective magnetic winding number of an ergodic
class-2 halo current filament is

qp 2 = fa

)φa

2π
+ fb

)φb

2π
+ fc

)φc

2π
= qp (1 − fθ ). (42)

Note that in a class-2 halo current pattern the current in the
limiter does not flow parallel to the magnetic field. Hence,
such a pattern can generate a force on the limiter.

Let ‖ 2, θ 2 and −φ 2 be the filament current density
as it runs parallel to magnetic field lines through the SOL
plasma, poloidally through the limiter, and toroidally through

the wall (in the minus-φ direction), respectively. Charge
conservation yields ‖ 2 w‖ δ = θ 2 wθ δ = −φ 2 wφ δ =
const., which implies that ‖ 2 is constant, −φ 2 ) ‖ 2, and
θ 2 ) [Bp(θ)/Bo] ‖ 2.

3.4. Potential drops across current filaments

Consider an ergodic class-1 halo current filament. The
potential drop across a type-a poloidal turn is

V1 a )
∫ θ−

θ+

(dφ/dθ) dθ
|∇φ|

‖ 1 + ‖ 2

σs
+

∫ θ+

θ−

dθ
|∇θ |

θ 1 + θ 2

σl

) 2π R qp

[
1 − fθ

σs δ0
+

(
ε s

c qp

)2
fθ

σl δ0

]

(ı‖ 1 + ı‖ 2), (43)

where σs and σl are the (uniform) electrical conductivities of
the SOL plasma and the limiter/wall, respectively, and ı‖ 1,2 =
‖ 1,2 δ0. Here, ı‖ 1 and ı‖ 2 are the radially integrated halo
current densities per unit length associated with class-1 and
class-2 halo current patterns, respectively, as they run parallel
to magnetic field lines through the SOL plasma. Moreover, we
have assumed that ε/qp ( 1 and fθ ( 1. The potential drop
across a type-b poloidal turn is

V1 b )
∮

(dθ/dφ) dθ
|∇φ|

‖ 1 + ‖ 2

σs
= 2π R qp

ı‖ 1 + ı‖ 2

σs δ0
. (44)

Finally, the potential drop across a type-c poloidal turn is

V1 c = V1 a +
∫ φ+

φ−

dφ
|∇φ|

φ 1

σl
= Va + 2π R fφ

ı‖ 1

σl δ0
. (45)

Thus, the mean potential drop across a single poloidal turn of
an ergodic class-1 halo current filament is

V1 = fa V1 a + fb V1 b + fc V1 c

)
2π R qp

σl δ0
[(1 − fθ fφ) τ (ı‖ 1 + ı‖ 2) + fθ fφ ı‖ 1], (46)

where τ = σl/σs. Here, we have again assumed that ε/qp ( 1.
Consider an ergodic class-2 halo current filament. The

potential drop across a type-a poloidal turn is such that
V2 a = V1 a . Likewise, the potential drop across a type-b
poloidal turn is such that V2 b = V1 b. Finally, the potential
drop across a type-c poloidal turn is written

V2 c = V2 a +
∫ φ−

φ+

dφ
|∇φ|

−φ 2

σl
= V2 a + 2π R (1 − fφ)

ı‖ 2

σl δ0
.

(47)

Thus, the mean potential drop across a single poloidal turn of
an ergodic class-2 halo current filament is

V2 = fa V2 a + fb V2 b + fc V2 c

)
2π R qp

σl δ0
[(1 − fθ fφ) τ (ı‖ 1 + ı‖ 2) + fθ (1 − fφ) ı‖ 2].

(48)

3.5. Halo current circuit equations

The halo currents discussed in this paper are driven inductively
by the changing toroidal and poloidal magnetic fluxes linked
by the halo as the cross-sectional area of the LCFS shrinks.
Now, the toroidal flux linked by the halo is

.φ ) π κ a2 s2 Bı. (49)

5
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Thus, the single-turn poloidal emf generated in the halo by the
shrinkage of the LCFS is

Eθ = −d .φ

dt
) π a2 Bo[2 κ + pκ (κ − 1) − pβ κ β/2]s2 γ ,

(50)

assuming that
d ln s

dt
= −γ , (51)

where γ is the growth rate of the instability causing the
shrinkage, and

pκ = d ln(κ − 1)

d ln s
, (52)

pβ = d ln β
d ln s

. (53)

Here, use has been made of equation (25). Furthermore, the
poloidal flux linked by the halo is

.θ = Lp Iφ p, (54)

where

Lp ) µ0 R

[
ln

(
8
ε s

)
− 2

]
(55)

is the (approximate) self-inductance of the shrinking plasma.
Hence, the single-turn toroidal emf generated in the halo by
the shrinkage of the LCFS is

Eφ = −d.θ

dt

= µ0 R

(
pI

[
ln

(
8
ε s

)
− 2

]
− 1

)
Iφ p γ , (56)

where

pI =
d ln Iφ p

d ln s
. (57)

The circuit equation for a single poloidal turn of an ergodic
class-1 halo current filament is simply

Eθ + qp 1 Eφ = V1. (58)

Likewise, the circuit equation for a single poloidal turn of an
ergodic class-2 halo current filament takes the form

Eθ + qp 2 Eφ = V2. (59)

According to the above circuit equations, class-1 and class-2
halo current filaments essentially act like helical wires, with
slightly different mean helical pitches, which are linked by
both toroidal and poloidal magnetic flux. It follows from
equations (38), (42), (46), (48), (50) and (56) that

[fθ fφ + (1 − fθ fφ) τ ]ı̂‖ 1 + (1 − fθ fφ) τ ı̂‖ 2

= γ̂

2π
(Cθ + Cφ), (60)

(1 − fθ fφ) τ ı̂‖ 1 + [fθ (1 − fφ) + (1 − fθ fφ) τ ]ı̂‖ 2

= γ̂

2π
(Cθ + [1 − fθ ] Cφ), (61)

where

Cθ = π [2 κ + pκ (κ − 1) − pβ κ β/2]
s2

qp
, (62)

Cφ =
(

pI

[
ln

(
8
ε s

)
− 2

]
− 1

)
Îφ p, (63)

ı̂‖ 1,2 = ı‖ 1,2/(εBo/µ0), Îφ p = Iφ p/(a εBo/µ0) and γ̂ = γ τl .
Here, εBo is a typical equilibrium poloidal field-strength,
a εB0/µ0 is a typical equilibrium toroidal plasma current,
εBo/µ0 is a typical radially integrated equilibrium toroidal
plasma current per unit poloidal length, and τl = µ0 σl δ0 a

is the characteristic L/R time of the limiter/wall. All hatted
quantities are designed to be O(1). Equations (60) and (61)
can be inverted to give

ı̂‖ 1 = γ̂

2π

[
(1 − fφ) (Cθ + Cφ) + (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
, (64)

ı̂‖ 2 = γ̂

2π

[
fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
.

(65)

3.6. Poloidal halo current

The net poloidal halo current flowing through the limiter is

Iθ l =
∫ φ+

φ−

dφ
|∇φ| (θ 1 + θ 2) δ

∣∣∣∣
θ=0

, (66)

which reduces to

Îθ l = s γ̂

c qp

[
fφ (Cθ + [1 − fθ fφ] Cφ)

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
, (67)

where Îθ l = Iθ l/(a εBo/µ0). Moreover, it is easily shown that
the conventional toroidal peaking factor for the poloidal halo
current (which is defined Tφ = ıθ max/(

∮
ıθ dφ/2π), where

ıθ (φ) = (θ 1 + θ 2) δ|θ=0) is

Tφ = 1
fφ

(68)

(since ıθ is a constant for φ− ! φ ! φ+, and zero otherwise).

3.7. Toroidal SOL current

The net toroidal current flowing through the SOL plasma is

Iφ s )
∫ θ−

θ+

dθ
|∇θ |

(‖ 1 + ‖ 2) δ

∣∣∣∣
φ=0

, (69)

which yields

Îφ s ) s γ̂

c

[
(1 − fθ ) (Cθ + [1 − fθ fφ] Cφ)
fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
, (70)

where Îφ s = Iφ s/(a εBo/µ0).

6



Nucl. Fusion 51 (2011) 053007 R. Fitzpatrick

3.8. Normal force on vacuum vessel

The radially integrated normal halo current force per unit area
acting on the vacuum vessel is

pµ ) jθ 2 Bo δ ζv = ı‖ 2 Bp(0) ζv, (71)

where

ζv(θ) =
{

1 θ− ! θ ! θ+

0 otherwise.
. (72)

It follows that

p̂µ ) s γ̂

2π c qp

[
fφ (Cθ + [1 − fθ ] Cφ)− (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
ζv,

(73)

where p̂µ = pµ/(ε2B 2
o /µ0). Recall that only class-2 halo

currents generate a force on the vacuum vessel.
The above vacuum vessel force distribution is toroidally

symmetric, despite the fact that the distribution of poloidal halo
currents is toroidally asymmetric, because of the presence of
class-2 halo currents flowing toroidally through the section of
the wall which lies between θ = θ− and θ = θ+ (see figure 3).
Now, the normal force density in the limiter is due to the (small)
class-2 poloidal halo current density crossed with the (large)
toroidal magnetic field, whereas that in the wall is due to the
(large) class-2 toroidal halo current density crossed with the
(small) poloidal magnetic field. Moreover, in our somewhat
idealized model, these two force densities turn out to be exactly
equal. Note, however, that our analysis has neglected the gap
which inevitably develops between the main plasma and the
aforementioned section of the wall when the kink mode attains
a finite amplitude. In response to the gap, we would expect
the toroidal current distribution in the wall to spread outside
the region θ− ! θ ! θ+ (leading to a reduction in the current
density), and the equilibrium poloidal field-strength at the wall
to simultaneously drop. Both these effects tend to reduce the
normal force per unit area acting on the wall relative to that
acting on the limiter. We can crudely simulate this reduction
by entirely neglecting the normal force acting on the wall,
whilst retaining that acting on the limiter. In other words, in
the following, equation (73) is replaced by

p̂µ ) s γ̂

2π c qp

[
fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
ζl ,

(74)

where

ζl(θ,φ) =
{

1 θ− ! θ ! θ+ and φ− ! φ ! φ+

0 otherwise.
(75)

3.9. Limiter force density

The normal halo current force density within the limiter is

fµ ) θ 2 Bo ζl =
ı‖ 2 Bp ζl

δ0
. (76)

It follows that

f̂µ = s γ̂

2π c qp δ̂0

[
fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]

×
Bp

Bp(0)
ζl, (77)

where f̂µ = fµ/(ε2 B 2
o /a µ0) and δ̂0 = δ0/a.

3.10. Net vertical force on vacuum vessel

The net vertical force acting on the vacuum vessel is

Fv =
∮ ∮

dν
|∇ν|

dφ
|∇φ|

pµeZ · eµ|µ=µp , (78)

which reduces to

F̂v ) 2π s2 γ̂

c2 qp

×
[
fθ fφ {fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ}

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]

sinc (π fθ/c), (79)

where sinc(x) ≡ sin x/x, F̂v = Fv/(ε a2 B 2
o /µ0), and use has

been made of equation (16).

3.11. Net sideways force on vacuum vessel.

Our present model predicts zero sideways force acting on the
vacuum vessel because, for the sake of simplicity, it assumes
that the vacuum vessel has the same shape and major radius
as the plasma, which leads to a limiter which is poloidally
symmetric about the top of the plasma (i.e. ν = π/2). See
section 5.6. This, in turn, yields a sideways force which
vanishes by symmetry. In reality, however, the vacuum vessel
is likely to have a different shape, and a slightly different major
radius, than the plasma, leading to a poloidally asymmetric
limiter, and a non-zero sideways force. We can crudely
simulate this effect by assuming that the limiter extends from
ν− ) π/2 to ν+ ) π/2 + 2π fθ/c, instead of from ν− )
π/2 − π fθ/c to ν+ ) π/2 + π fθ/c, for the purpose of
calculating the sideways force. This assumption effectively
yields an upper limit on the sideways force, since it completely
suppresses cancellation between the sideways components of
the normal forces acting on the inboard and outboard halves of
the vacuum vessel (because the limiter is shifted entirely to the
outboard half, so zero normal force acts on the inboard half).
Thus, the maximum net sideways force acting on the vacuum
vessel, which is written

Fh = (F 2
X + F 2

Y )1/2 = |FX|

=
∣∣∣∣

∮ ∮
dν

|∇ν|
dφ

|∇φ|
pµ eX · eµ

∣∣
µ=µp

∣∣∣∣ , (80)

since FY = 0 by symmetry, becomes

F̂h ) 2π2 κ s2 γ̂

c3 qp

×
[
f 2
θ fφ {fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ}

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]

sinc2(π fθ/c) sinc(π fφ), (81)

where F̂h = Fh/(ε a2 B 2
o /µ0), and use has been made of

equation (15).

4. Plasma stability

Let us assume a common exp(−i nφ) toroidal variation
of perturbed quantities, where n is a non-negative integer.
Furthermore, let the perturbed magnetic fields inside and
outside the LCFS be written δB = ∇V and δB′ = ∇V ′,

7
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respectively. This automatically ensures that the perturbed
current density is zero both interior and exterior to the LCFS.
(Any perturbed current is assumed to flow on the LCFS.)
Furthermore, the perturbed magnetic fields are divergence-free
provided that ∇2V = ∇2V ′ = 0, or, from (13),

∂2V

∂µ2
+
∂2V

∂ν2
) 0, (82)

∂2V ′

∂µ2
+
∂2V ′

∂ν2
) 0, (83)

assuming that n ε ( 1.
Now, in order to guarantee that δB is both finite and

continuous at µ = 0, we require [17]

V (0, ν) = V (0,π − ν), (84)

∂V (0, ν)

∂µ
= −∂V (0,π − ν)

∂µ
. (85)

The most general solution of (82) which satisfies these
constraints is

V (µ, ν) =
∑

m +=0

[am cosh(m µ) cos(m [ν − π/2])

+ bm sinh(m µ) sin(m [ν − π/2])], (86)

where m is an integer, and the am and bm are constants.
Furthermore, the most general solution of (83) which satisfies
the physical constraint V ′(µ → ∞, ν) → 0 is

V ′(µ, ν) =
∑

m +=0

a′
m e−|m| (µ−µp) e i m ν, (87)

where the a′
m are constants. (Here, we are neglecting currents

flowing in that section of the wall which is remote from the
plasma once significant shrinkage of the LCFS has occurred:
i.e. the section which does not lie in the range θ− ! θ ! θ+.)

The matching conditions for perturbed quantities at the
LCFS are [12, 15–17]

eµ · δB = B · ∇ξ − ξ eµ · (eµ · ∇)B, (88)

eµ · δB′ = B′ · ∇ξ − ξ eµ · (eµ · ∇)B′, (89)

µ−1
0 B · δB + ξ eµ · ∇(B2/2µ0)

= µ−1
0 B′ · δB′ + ξ eµ · ∇(B ′ 2/2µ0)

+ ξ fµ, (90)

where ξ(ν) exp(−i nφ) is the normal plasma displacement
on the LCFS, and fµ is the normal force density acting on
the limiter due to the halo current (see equation (77)). The
first two matching conditions ensure that the perturbed LCFS
remains a magnetic flux-surface, whereas the third condition
maintains perturbed pressure balance (which is necessary,
since we are assuming that the growth times of the vertical and
kink instabilities are both much longer than the Alfvén time).
The final term on the right-hand side of equation (90) can be
shown to be the net normal force per unit area (due to plasma
pressure and j × B forces) acting outwards across the plasma
boundary. Of course, for a free-boundary plasma (that is not

moving Alfvénically), the normal force is constrained to be
zero everywhere on the boundary. However, this ceases to be
the case as soon as the plasma touches the rigid limiter. Instead,
for the sake of self-consistency, the force must be such that a
virtual displacement of the plasma into the limiter yields a the
force density in the overlap region that matches the limiter force
density due to the halo current [15, 18]. Note that the reaction
(due to the rigidity of the limiter) to the force per unit area ξ fµ

that the plasma effectively exerts on the limiter is responsible
for transforming otherwise ideally unstable vertical and kink
modes into resistive modes which grow either on the L/R time
of the limiter/wall or the SOL plasma [18].

Making use of equations (10)–(14), as well as
equations (17), (20), (21) and (25), the above matching
conditions reduce to

∂V

∂µ

∣∣∣∣
µ=µp

= −i n hp εBo ξ, (91)

∂V ′

∂µ

∣∣∣∣
µ=µp

=
∂(Bp ξ)

∂ν
− i n hp εBo ξ, (92)

Bp
∂V ′

∂ν

∣∣∣∣
µ=µp

= −i n hp εBo (V − V ′)µ=µp

+

(
κ s2 B 2

p

h 2
p

+ κ β s ε B 2
o cos ν − µ0 a hp fµ

)

ξ . (93)

5. Nonaxisymmetric VDE model

5.1. Normalization

Let x̂ = x/a, ẑ = z/a, β̂ = β/ε, B̂p = Bp/(εBo/s),
ξ̂ = ξ/(s a), 2̂n=0 = 2n=0/a, 2̂n=1 = 2n=1/a, V̂ =
V/(a εBo), V̂ ′ = V ′/(a εBo), ĥp = hp/s, δ̂0 = δ0/a,
γ̂ = γ τl , Îφ p = Iφ p/(a εBo/µ0), Îθ l = Iθ l/(a εBo/µ0),
Îφ s = Iφ s/(a εBo/µ0), f̂µ = fµ/(ε2 B 2

o /a µ0), F̂v =
Fv/(ε B 2

o a2/µ0) and F̂h = Fh/(ε B 2
o a2/µ0). Here, β̂ is the

normalized toroidal plasma beta, B̂p the normalized poloidal
magnetic field-strength immediately outside the plasma, ξ̂

the normal plasma displacement at the boundary, 2̂n=0/n=1

the normalized n = 0/n = 1 displacement of the plasma
centroid relative to that of the vacuum vessel, V̂ the normalized
perturbed magnetic potential inside the boundary, V̂ ′ the
normalized perturbed magnetic potential outside the boundary,
δ̂0 the normalized vacuum vessel radial thickness, γ̂ the
normalized instability growth rate, Îφ p the normalized toroidal
plasma current, Îθ l the normalized poloidal halo current
(flowing through the limiter), Îφ s the normalized toroidal halo
current (flowing through the SOL plasma), f̂µ the normalized
normal halo current force density acting on the vacuum vessel,
F̂v the normalized net vertical force on the vessel and F̂h the
normalized net sideways force on the vessel. Recall that τl is
the L/R time of the vacuum vessel, ε the inverse-aspect ratio
of the plasma, Bo the on-axis vacuum toroidal magnetic field-
strength, a the initial horizontal semi-axis of the plasma, κ the
plasma elongation and s a dimensionless scale factor which
decreases from 1 to 0 as the VDE progresses.

8
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5.2. Fundamental equations

The plasma equilibrium is determined by the following
equations (see section 2):

ĥp(ν) = [1 + (κ2 − 1) cos2 ν]1/2, (94)

B̂p(ν) = 2 β̂1/2

α
[1 − s3 α2 sin2(ν/2)]1/2, (95)

qp = s2 αQ(α)

π β̂1/2
, (96)

Q(α) = 1
2

∫ π

0

[
1 + (κ2 − 1) cos2 ν

1 − s3 α2 sin2(ν/2)

]1/2

dν, (97)

Îφ p = 2
∫ π

0
ĥp B̂p dν, (98)

c = π/2
Q(α) (1 − s3 α2/2)1/2

. (99)

Here, α is an arbitrary constant.
Plasma stability is governed by (see section 4)

V̂ (µ, ν) =
∑

m +=0

[am cosh(m µ) cos(m [ν − π/2])

+ bm sinh(m µ) sin(m [ν − π/2])], (100)

V̂ ′(µ, ν) =
∑

m +=0

a′
m e−|m| (µ−µp) e i m ν, (101)

∂V̂

∂µ

∣∣∣∣∣
µ=µp

= −i n s2 ĥp ξ̂ , (102)

∂V̂ ′

∂µ

∣∣∣∣∣
µ=µp

=
∂(B̂p ξ̂)

∂ν
− i n s2 ĥp ξ̂ , (103)

B̂p
∂V̂ ′

∂ν

∣∣∣∣∣
µ=µp

= −i n s2 ĥp (V̂ − V̂ ′)µ=µp

+

(
κ B̂ 2

p

ĥ 2
p

+ κ β̂ s3 cos ν − s3 ĥp f̂µ

)

ξ, (104)

where n is the toroidal mode number, m is a poloidal mode
number, am, bm, a′

m are arbitrary constants, and µp =
tanh−1(κ−1).

Finally, the normal halo current force density acting on
the vacuum vessel is specified by (see section 3)

f̂µ = s γ̂

2π c qp δ̂0

×
[
fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ

fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
B̂p

B̂p(0)
ζl ,

(105)

ζl(θ,φ) =
{

1 θ− ! θ ! θ+ and φ− ! φ ! φ+

0 otherwise,
(106)

Cθ = π [2 κ + pκ (κ − 1) − pβ̂ κ β/2]
s2

qp
, (107)

Cφ =
(

pI

[
ln

(
8
ε s

)
− 2

]
− 1

)
Iφ p. (108)

Here, fθ and fφ are, respectively, the poloidal and toroidal
angular coverages of the limiter (i.e., the plasma-touching

section of the vacuum vessel), whilst τ is the ratio of the L/R
time of the vacuum vessel to that of the SOL plasma. The
positive constants pκ and pI are defined in equations (52) and
(57), respectively. Finally,

pβ̂ = d ln β̂
d ln s

. (109)

5.3. Derivation of dispersion relation

Let
ξ̂(ν) =

∑

m

ξm e i m ν, (110)

where the ξm are constants. The first matching condition (102)
yields [15, 17]

V̂ (µp, ν) = i
∑

k +=0,m′

|k|−1
[

1 + λ2|k|

1 − λ2|k| Ekm′ +
2 (−λ)|k|

1 − λ2|k| E−km′

]

×e i k ν ξm′ , (111)

where

Emm′ =
∮

(−n s2 ĥp) e i (m′−m) ν dν
2π

, (112)

and

λ = κ − 1
κ + 1

. (113)

Equation (102) also leads to the incompressibility constraint
[15, 17] ∑

m′

E0m′ ξm′ = 0. (114)

The second matching condition (103) implies that [15, 17]

V̂ ′(µp, ν) = −i
∑

k +=0,m′

|k|−1 Gkm′ e i k ν ξm′ , (115)

where

Gmm′ =
∮

(m B̂p − n s2 ĥp) e i (m′−m) ν dν
2π

. (116)

Finally, the third matching condition (104), in combination
with equations (111) and (115), reduces to the dispersion
relation ∑

m′

Fmm′ ξm′ = 0, (117)

where [15, 17]

Fmm′ =
∑

k +=0

G ∗
km |k|−1 Gkm′

+
∑

k +=0

E ∗
km |k|−1

[
1 + λ2|k|

1 − λ2|k| Ekm′ +
2 (−λ)|k|

1 − λ2|k| E−km′

]

− Hmm′ , (118)

and

Hmm′ =
∮ ∮ (

κ B̂ 2
p

ĥ 2
p

+ κ β̂ s3 cos ν − s3 ĥp f̂µ

)

e i (m′−m) ν

× dν
2π

dφ
2π

. (119)

Note that, for the sake of simplicity, in deriving the above
dispersion relation, we have neglected any coupling of different
toroidal harmonics due to toroidal asymmetries in the limiter
force distribution.

9
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5.4. Vertical stability

For the n = 0 vertical instability, we have

Gn=0
mm′ = 1

π

∫ π

0
m B̂p cos[(m′ − m) ν] dν, (120)

Hn=0
mm′ = κ

π

∫ π

0

B̂ 2
p

ĥ 2
p

cos[(m′ − m) ν] dν

+
κ β̂ s3

2
(δm m′+1 + δm m′−1) − δHn=0

mm′ , (121)

δHn=0
mm′ )

s3 Îφ p 5
n=0

2π c qp δ̂0
C sinc[(m′ − m)π fθ/c] e i (m′−m)π/2,

(122)

where

5n=0 = s

c Îφ p
(1 − fθ )

×
[

Cθ + (1 − fθ fφ) Cφ
fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
γ̂ n=0, (123)

C = fθ fφ

1 − fθ

[
fφ (Cθ + [1 − fθ ] Cφ) − (1 − fθ fφ) τ Cφ

Cθ + (1 − fθ fφ) Cφ

]
.

(124)

Here, γ̂ n=0 is the associated normalized growth rate, and 5n=0

a conveniently scaled version of the same. The n = 0 force
matrix takes the form

Fn=0
mm′ =

∑

k +=0

Gn=0
km |k|−1 Gn=0

km′ − Hn=0
mm′ . (125)

Moreover, the incompressibility constraint (114) reduces to
ξn=0

0 = 0, and the n = 0 dispersion relation becomes
∑

m′ +=0

Fn=0
mm′ ξ

n=0
m′ = 0 (126)

for m += 0. Finally, the scaled n = 0 growth rate is determined
by searching for the value of 5n=0 which sets the smallest
eigenvalue of the n = 0 force matrix, (125), to zero.

5.5. Kink stability

For the n = 1 kink instability, we have

Emm′ = 1
π

∫ π

0
(−s2 ĥp) cos[(m′ − m) ν] dν, (127)

Gn=1
mm′ = 1

π

∫ π

0
(m B̂p − s2 ĥp) cos[(m′ − m) ν] dν, (128)

Hn=1
mm′ = κ

π

∫ π

0

B̂ 2
p

ĥ 2
p

cos[(m′ − m) ν] dν

+
κ β̂ s3

2
(δm m′+1 + δm m′−1) − δHn=1

mm′ , (129)

δHn=1
mm′ )

s3 Îφ p 5
n=1

2π c qp δ̂0
C sinc[(m′ − m)π fθ/c] e i (m′−m)π/2,

(130)

where

5n=1 = s

c Îφ p
(1 − fθ )

×
[

Cθ + (1 − fθ fφ) Cφ
fθ fφ (1 − fφ) + (1 − fθ fφ) τ

]
γ̂ n=1. (131)

Here, γ̂ n=1 is the associated normalized growth rate, and 5n=1

a conveniently scaled version of the same. The n = 1 force
matrix takes the form

Fn=1
mm′ =

∑

k +=0

Gn=1
km |k|−1 Gn=1

km′

+
∑

k +=0

Ekm |k|−1
[

1 + λ2|k|

1 − λ2|k| Ekm′ +
2 (−λ)|k|

1 − λ2|k| E−km′

]

−Hn=1
mm′ . (132)

However, the n = 1 dispersion relation,
∑

m′

Fn=1
mm′ ξ

n=1
m′ = 0, (133)

must be solved subject to the incompressibility constraint
∑

m′

E0m′ ξn=1
m′ = 0. (134)

This is equivalent to solving the unconstrained dispersion
relation [17] ∑

m′

F̃ n=1
mm′ ξ̃

n=1
m′ = 0, (135)

where
F̃ n=1

mm′ =
∑

k,l

Pmk F n=1
kl Plm′ , (136)

ξn=1
m =

∑

m′

Pmm′ ξ̃n=1
m′ , (137)

and

Pmm′ = δm m′ − E0m E0m′
∑

k(E0k) 2
. (138)

Thus, the scaled n = 1 growth rate is determined by searching
for the value of 5n=1 which sets the smallest eigenvalue of the
transformed n = 1 force matrix, (136), to zero.

5.6. Determination of limiter boundaries

The parametric equation of the LCFS (in the poloidal plane) is
written (see equations (6) and (7))

x̂ = s cos ν, (139)

ẑ = κ s sin ν. (140)

For the sake of simplicity, the inner surface of the vacuum
vessel is assumed to coincide with the LCFS when s = 1.
Thus, the parametric equation of the inner surface of the
vacuum vessel (in a coordinate system whose origin is
coincident with the plasma centroid in the poloidal plane) takes
the form

x̂ ′ = cos ν ′, (141)

ẑ′ = κ0 sin ν ′ − 2̂n=0 − 2̂n=1 cosφ, (142)

where κ0 ≡ κ(s = 1), 2̂n=0 is the n = 0 displacement
of the plasma centroid relative to that of the vacuum vessel
(normalized to a), and 2̂n=1 cosφ is the corresponding n = 1
displacement. (Here, for the sake of simplicity, we are
neglecting any helical variation of the n = 1 displacement.)
The constraint

2̂n=0 + 2̂n=1 = κ0 − κ s (143)

10
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ensures that the LCFS remains in contact with the inner
boundary of the vacuum vessel at the geometric centre of the
limiter (i.e. at ν = ν ′ = π/2 and φ = 0).

Since d(2̂n=0 + 2̂n=1)/ds = −[κ +pκ (κ−1)], according
to equations (52) and (143), let us assume that

d2̂n=0

ds
=






−
(

5n=0

5n=0 + 5n=1

)
[κ + pκ (κ − 1)]

5n=1 > 0, 5n=0 > 0
−[κ + pκ (κ − 1)]

5n=1 ! 0, 5n=0 > 0,

(144)

and

d2̂n=1

ds
=






−
(

5n=1

5n=0 + 5n=1

)
[κ + pκ (κ − 1)]

5n=1 > 0, 5n=0 > 0
0
5n=1 ! 0, 5n=0 > 0.

(145)

According to this assumption, when the n = 0 vertical and
n = 1 kink instabilities are both unstable, the ratio of the
derivatives of the n = 0 and n = 1 plasma displacements with
respect to the plasma shrinkage factor, s, is equal to the ratio
of the instantaneous linear growth rates of the corresponding
instabilities. This is reasonable because 1 − s plays the role
of an effective time during the VDE. The initial conditions for
the previous two equations are 2̂n=0(s = 1) = 0, and

2̂n=1(s = 1) = 0, (146)

respectively.
In the vicinity of the limiter, the parametric equation of

the outer boundary of the halo is approximately

x̂ ′′ = s cos ν, (147)

ẑ′′ = κ s sin ν + δ̂0, (148)

where δ̂0 ( 1 is the local halo thickness (which is the same
as the local thickness of the vacuum vessel) normalized to
a. The angular boundary of the limiter is determined by
the simultaneous solution of x̂ ′ = x̂ ′′ and ẑ′ = ẑ′′: i.e. it
corresponds to the locus of those points at which the outer
boundary of the halo is coincident with the inner boundary of
the vacuum vessel.

Let us calculate the poloidal extent of the limiter at φ = 0.
This is specified by s cos ν = cos ν ′ (i.e. x̂ ′′ = x̂ ′) and
κ s sin ν = κ0 sin ν ′ − 2 (i.e. ẑ′′ = ẑ′(φ = 0)), where

2 ≡ 2̂n=0 + 2̂n=1 + δ̂0 = κ0 − κ s + δ̂0. (149)

Moreover, given that θ ) c (ν − π/2) (see equation (31)),
the limiter boundaries are located at ν± ) π/2 ± π fθ/c
(see figure 1). Hence, cos ν± = ∓ sin(π fθ/c) and sin ν± =
cos(π fθ/c). Finally,

s2 cos2 ν± = 1 −
(
κ s sin ν± + 2

κ0

)2

, (150)

which yields

cos(π fθ/c)

=
κ 2 −

√
κ2 2 2 − (κ 2

0 − κ2) [(1 − s2) κ 2
0 − 2 2]

(κ 2
0 − κ2) s

.

(151)

Let us calculate the toroidal extent of the limiter at ν =
ν ′ = π/2. This is specified by κ s = κ0−2−2̂n=1 (cosφ−1)

(i.e. ẑ′′(ν = π/2) = ẑ′(ν ′ = π/2)), which reduces to
sin2(φ/2) = δ̂0/(2 2̂n=1). (Note that x̂ ′′(ν = π/2) = x̂ ′(ν ′ =
π/2) is automatically satisfied.) Now, the limiter boundaries
are located at φ± = ±π fφ (see figure 1). It follows that

sin(π fφ/2) =
{

1 2̂n=1 ! δ̂0/2
1/[δ̂0/(2 2̂n=1)]1/2 2̂n=1 > δ̂0/2.

(152)

Equations (145), (146), (151) and (152) effectively
determine the poloidal and toroidal angular extents of
the limiter, fθ and fφ , respectively, as functions of the
scale factor, s.

5.7. VDE simulations

Our VDE simulations consist of two main phases. In the
so-called shrinkage phase, which corresponds to 1 " s " sc,

κ = 1 + (κ0 − 1) s pκ , (153)

β̂ = β̂0 s pβ̂ , (154)

Îφ p = Îφ p 0 s pI , (155)

where κ0, β̂0, and Îφ p 0 are the initial plasma elongation,
normalized plasma beta and normalized plasma current,
respectively, and pκ , pβ̂ and pI are positive constants (see
equations (52), (109), and (57)). On the other hand, in the
so-called quench phase, which corresponds to sc > s,

κ = 1 + (κ0 − 1) s pκ , (156)

β̂ = β̂0 s
pβ̂−p′

β̂

c s
p′
β̂ , (157)

Îφ p = Îφ p 0 s
pI −p′

I
c s p′

I (158)

where p′
β̂

> pβ̂ and p′
I > pI . Incidentally, it is generally

convenient to specify the initial edge safety factor, qp 0,
rather than the normalized initial plasma current, Îφ p 0 (see
equations (94)–(98)).

It is helpful to define the composite scaled growth rate

5 =
{
5n=0 + 5n=1 5n=1 > 0, 5n=0 > 0
5n=0 5n=1 ! 0, 5n=0 > 0.

(159)

The poloidal halo current, including currents driven by both
n = 0 and n = 1 instabilities, and expressed as a fraction of the
original toroidal plasma current, becomes (see equation (67))

Iθ ≡ Îθ l

Îφ p 0
=

Îφ p

Îφ p 0

fφ 5

qp (1 − fθ )
, (160)

whereas toroidal peaking factor for the halo current is written
(see equation (68))

Tφ = 1
fφ

. (161)

The toroidal SOL current, expressed as a fraction of the toroidal
plasma current, takes the form (see equation (70))

Iφ ≡ Îφ s

Îφ p
= 5. (162)
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Furthermore, the normalized net vertical force acting on the
vacuum vessel is written (see equation (79))

F̂v )
2π s Îφ p 5

c qp
C sinc(π fθ/c), (163)

and the normalized net sideways force becomes (see
equation (81))

F̂h )
2π2 κ s Îφ p 5

c2 qp
fθ C sinc2(π fθ/c) sinc(π fφ). (164)

It is hypothesized that the quench phase is triggered as
soon as the toroidal SOL current fraction, Iφ , exceeds some
critical value 5c, where 0 < 5c < 1: i.e. as soon as the scaled
composite growth rate 5 exceeds 5c (see equation (162)). The
reasoning behind this hypothesis is that, as the VDE develops,
more and more toroidal current is transferred inductively from
the relatively hot main plasma to the relatively cold SOL
plasma. However, there is a limit to how far this transfer
can proceed. For instance, it would not make any sense for
the current flowing in the SOL plasma to exceed the original
current flowing in the main plasma, which implies that the
transfer must stop before 5 exceeds unity. Thus, in our model,
the quench phase effectively prevents the toroidal current
flowing in the SOL plasma from becoming unphysicaly large.
Note, however, that the above hypothesis is consistent with the
experimental observation that the quench is triggered by low
values of the edge safety factor. This follows because, once qp

has fallen to a small enough value to destabilize the n = 1 kink
mode, the normalized growth rate of this mode, 5n=1, tends to
increase very rapidly with any further decrease in qp (unlike
5n=0, which exhibits weak variation with qp), and the quench
criterion 5 ≡ 5n=0 + 5n=1 > 5c is soon satisfied. The above
hypothesis is also consistent with the idea that the quench is
ultimately caused by the development of magnetic ergodicity
within the plasma [21–23]. This follows because the degree of
ergodicity of the magnetic field inside the plasma is a highly
nonlinear function of the amplitude of the nonaxisymmetric
n = 1 kink mode, and, according to the above discussion, the
quench criterion 5 > 5c is only likely to be satisfied when this
amplitude has attained a significant value.

5.8. Summary of model

The nonaxisymmetric VDE model described in this paper is
rather involved, since it incorporates stability calculations for
the vertical and kink modes, circuital equations for the halo
currents, and a shrinkage model for the plasma shape, pressure
and current. For the sake of clarity, the complete model is
summarized below.

The free parameters in the model are as follows.
(i) ε—the initial inverse aspect-ratio. (ii) κ0—the initial
vertical elongation. (iii) β̂0—the initial toroidal plasma beta
(normalized to the initial inverse aspect-ratio, ε). (iv) qp 0—the
initial edge safety factor. (v) δ̂0—the mean radial thickness
of the vacuum vessel (normalized to the initial horizontal
semi-axis of the plasma, a). (vi) τ—the ratio of the vacuum
vessel time-constant to that of the SOL plasma. (vii) 5c—
the critical toroidal halo current fraction at which the quench
phase is triggered. (viii) pκ , pβ̂ , pI , pβ̂ ′ , p′

I —various

dimensionless parameters which govern the variation of the
plasma elongation, normalized beta and normalized toroidal
current during the shrinkage and quench phases. Note that
the parameter qp 0 is converted into the equivalent parameter
Îφ p 0—the normalized initial toroidal plasma current—with the
aid of equations (94)–(98) (with s = 1, κ = κ0, β̂ = β̂0, and
the parameter α adjusted until qp = qp 0.)

During the shrinkage phase, the plasma shrinkage factor s

gradually decreased from unity. The normalized n = 1
plasma displacement is given the initial value 2̂n=1 = 0.
At each s value, the following calculation is performed.
(i) The elongation, κ , normalized plasma beta, β̂, and
normalized toroidal plasma current, Îφ p, are calculated from
equations (153)–(155), respectively. The edge safety factor
is then determined from equations (94)–(99) (by adjusting
α until the correct Îφ p is obtained). (ii) The poloidal and
toroidal induction parameters Cθ and Cφ are determined from
equations (107) and (108), respectively. (iii) The normalized
net plasma displacement 2 is determined from equation (149).
(iv) The fractional poloidal and toroidal coverages of the limiter
are determined from equations (151) and (152), respectively.
(v) The elements of the n = 0 F -matrix are determined from
equations (113) and (120)–(125). (vi) The n = 0 matrix
eigenvalue problem is solved to determine the normalized
n = 0 growth rate, 5n=0. (vii) The elements of the n = 1
F -matrix are determined from equations (127)–(132). (viii)
The n = 1 matrix eigenvalue problem is solved to determine
the normalized n = 1 growth rate, 5n=1. (ix) Equation (145)
is integrated to give the new value of the normalized n = 1
plasma displacement, 2̂n=1. (x) The parameters Iθ , Tφ , Iφ ,
F̂v and F̂φ are determined from equations (159)–(160), (161),
(162), (163) and (164), respectively.

The quench phase is triggered once 5 ≡ 5n=0 + 5n=1

exceeds the critical value 5c (at, s = sc, say). During
the quench phase, the shrinkage factor s gradually decreased
from sc. At each s value, the following calculation is
performed. (i) The elongation, κ , normalized plasma beta,
β̂, and normalized toroidal current, Îφ p, are calculated from
equations (156)–(158), respectively. (ii)–(x) The remaining
steps in the calculation are the same as in the shrinkage phase.

6. Results

6.1. Example VDE simulation

Figures 4–9 show data from an example VDE simulation
performed with the following parameters: ε = 0.3, κ0 = 1.5,
β̂0 = 0.15, qp 0 = 4.0, τ = 0.01, δ̂0 = 0.05, pκ = 0.,
pβ̂ = 0., pI = 0.2, p′

β̂
= 100.0, p′

I = 5.0, 5c = 0.5. The fact
that τ , which is the ratio of the resistivity of the SOL plasma
to that of the limiter, is small compared with unity indicates
that the limiter is much more resistive than the SOL plasma.
Moreover, setting 5c = 0.5 means that the quench phase
(in which the plasma current and pressure both decay rapidly in
time) is triggered as soon as the toroidal current flowing in the
SOL plasma exceeds 50% of the net toroidal plasma current.
The fact that p′

β̂
/ p′

I implies that the thermal quench is
much more rapid than the current quench, in accordance with
experimental observations.
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Figure 4. Example VDE simulation. Edge safety factor, qp

(triangles), 10× normalized plasma beta, 10 β̂ (squares), and
normalized toroidal plasma current, Îφ p (circles), versus
cross-section shrinkage factor, 1 − s. Simulation parameters:
ε = 0.3, κ0 = 1.5, β̂0 = 0.15, qp 0 = 4.0, τ = 0.01, δ̂0 = 0.05,
pκ = 0., pβ̂ = 0., pI = 0.2, p′

β̂
= 100.0, p′

I = 5.0, 5c = 0.5.
Vertical dotted lines indicate onset of kink instability, onset of
toroidal localization of limiter, and onset of quench phase, in order
from left to right.

Figure 5. Example VDE simulation. Normalized amplitude of
n = 0/n = 1 displacement of plasma poloidal centroid, 2̂n=0/n=1

(triangles/squares), versus cross-section shrinkage factor, 1 − s. See
figure 4 caption.

It can be seen, from figures 4–9, that in the so-called
shrinkage phase—during which the cross-sectional area of
the main plasma shrinks, as it interacts with the vacuum
vessel, at constant plasma beta, constant plasma elongation,
and (almost) constant plasma current, and the edge safety
factor consequently decreases in time—the n = 1 kink
instability is initially stable. (On the other hand, the n = 0
vertical instability is unstable throughout the whole simulation.
Incidentally, the degree of plasma shrinkage is parametrized by
1 − s, which also acts as an effective time, measured from the
onset of the VDE.) However, it can also be seen that when the
plasma has shrunk sufficiently that its edge safety factor falls
below some critical value, lying between 1 and 2, the n = 1

Figure 6. Example VDE simulation. Poloidal/toroidal fractional
coverage of limiter, fθ,φ (triangles/squares), versus cross-section
shrinkage factor, 1 − s. See figure 4 caption.

Figure 7. Example VDE simulation. Toroidal peaking factor for
poloidal halo current, Tφ , versus cross-section shrinkage factor,
1 − s. See figure 4 caption.

kink mode becomes unstable. Initially, the amplitude of the
kink mode is not large enough to cause toroidal localization of
the limiter (i.e. 2̂n=1 < δ̂0/2—see equation (152)), implying
that the poloidal halo current distribution remains toroidally
symmetric. Later, however, the kink mode amplitude grows
sufficiently large to cause localization of the limiter, and
the halo current distribution consequently becomes toroidally
asymmetric. Finally, the so-called quench phase commences
when the toroidal halo current fraction exceeds a critical value.
In this phase, the plasma current and pressure both decay in
time, although the pressure decays much more rapidly than the
current. The edge safety factor increases during the quench
phase because the current decays more rapidly than the cross-
sectional area of the plasma shrinks.

It follows, from the above discussion, that a typical VDE
consists of four identifiable stages. Stage I (to the left of
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Figure 8. Example VDE simulation. Toroidal/poloidal halo current
fraction, Iφ,θ (triangles/squares), versus cross-section shrinkage
factor, 1 − s. See figure 4 caption.

Figure 9. Example VDE simulation. Normalized net
vertical/sideways force acting on vacuum vessel, F̂v,h
(triangles/squares), versus cross-section shrinkage factor, 1 − s. See
figure 4 caption.

the first vertical dotted line in figures 4–9) corresponds to
the initial part of the shrinkage phase in which the n = 1
kink mode is stable. Stage II (between the first and second
vertical dotted lines) corresponds to the intermediate part
of the shrinkage phase in which the n = 1 kink mode
is unstable, but the halo current distribution is toroidally
symmetric. Stage III (between the second and the third vertical
dotted lines) corresponds to the final part of the shrinkage
phase in which the growing kink mode renders the halo current
distribution toroidally asymmetric. Finally, stage IV (to the
right of the third vertical dotted line) corresponds to the
quench phase.

Figures 8 and 9 indicate that the toroidal and poloidal halo
current fractions, as well as the normalized net vertical force
acting on the vacuum vessel, are comparatively small during
stage I of the VDE: i.e. when the kink mode is stable. However,

the onset of kink mode instability, at the start of stage II,
instigates a rapid increase in the halo current fractions and the
vertical force. Moreover, during stage III, when the kink mode
amplitude is sufficiently large to produce toroidal asymmetry
of the halo current distribution, the halo current fractions and
vertical force start to increase even faster. Finally, in the quench
phase, which corresponds to stage IV, the halo current fractions
and vertical force decay rapidly. Consequently, the peak halo
current fraction, the peak vertical force, and the minimum edge
safety factor, all occur at the onset of the current and pressure
quench—i.e. at the start of stage IV of the VDE. Figures 8 and
9 also show that the net sideways force acting on the vacuum
vessel is zero (by symmetry) in stages I and II, becomes non-
zero and grows rapidly in stage III, and then decays rapidly
in stage IV. Moreover, the peak sideways force is a significant
fraction of the peak vertical force.

Recall that, for the sake of simplicity, our model neglects
the effect of current gradients on the stability of the n = 1
kink mode. This is a reasonable approximation during the
shrinkage phase of a VDE. However, strong current gradients
are likely to be generated within the plasma during the quench
phase, because the current in the outermost regions of the
plasma almost certainly decays faster than that in the core. It
follows that our model probably significantly underestimates
the growth rate of the n = 1 kink mode during the quench
phase. This may explain why the model predicts that the halo
current fraction and the forces on the vacuum vessel peak at
the start of the quench phase, rather than during this phase, as
is generally the case in experiments.

For typical ITER parameters (i.e. ε = 0.34, Bo = 5.68 T
and a = 2.8 m [14]) the peak vertical and horizontal forces on
the vacuum vessel inferred from the example simulation are
31 MN and 12 MN, respectively.

6.2. VDE parameter scans

In the following, all plotted values (except Îφ p 0 and β̂0) are
evaluated at the start of the quench phase, when the halo current
and halo current force achieve their maximum values, and the
edge safety factor reaches its minimum value.

Figures 10–13 display data from a collection of VDE
simulations performed with a wide range of different values
of the parameters β̂0, qp 0, κ0 and τ . Note that the range of
β̂ values used in these simulations spans all cases in which
the kink mode is stable when qp = qp 0. Figure 10 shows
the toroidal peaking factor for the poloidal halo current, Tφ ,
versus the poloidal halo current fraction, Iθ . The plot exhibits
the characteristic inverse relationship between Tφ and Iθ that
has been observed experimentally on many different tokamaks
[7–9]. Moreover, the actual values of Tφ and Iθ are very
much in line with those seen in experiments [7–9]. Figure 11
shows Iθ Tφ , which is a measure of the peak poloidal halo
current density in the vacuum vessel, versus the effective
edge safety factor for class-2 halo current filaments, qp 2 (see
equation (42)). (Recall that class-2 filaments are responsible
for the halo current force acting on the vessel.) It can be seen
that there is a strong inverse relationship between the peak
halo current density and the minimum effective safety factor.
Figure 12 shows the ratio of the normalized net sideways force,
F̂h, acting on the vacuum vessel, to the normalized net vertical
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Figure 10. VDE parameter scan. Toroidal peaking factor for
poloidal halo current, Tφ , versus poloidal halo current fraction, Iθ ,
for VDE simulations performed with β̂0 in the range 0.0–0.35, qp 0
in the range 2.0–5.0, κ0 in the range 1.1–1.7, and τ in the range
0.01–1.0. The other simulation parameters are ε = 0.3, δ̂0 = 0.05,
pκ = 0., pβ̂ = 0., pI = 0.2, p′

β̂
= 100.0, p′

I = 5.0, 5c = 0.5.

Figure 11. VDE parameter scan. Peak poloidal halo current density
parameter, Iθ Tφ , versus minimum effective edge safety factor, qp 2,
for VDE simulations shown in figure 10.

force, F̂v, versus the normalized initial plasma beta, β̂0. There
is a clear correlation between the plasma beta and the ratio of
the sideways force to the vertical force. Moreover, the ratio
approaches unity at comparatively high-beta values. Finally,
figure 13 shows F̂v Tφ , which is a measure of the normalized
peak vertical force density in the vacuum vessel, versus the
normalized initial toroidal plasma current, Îφ p 0. It can be seen
that increasing F̂v Tφ correlates strongly with increasing Îφ p 0.
However, the plot also exhibits a strong correlation between
increasing vacuum vessel resistivity, relative to the SOL
plasma, and increasing force density: i.e. between decreasing
τ and increasing F̂v Tφ [21–23].

Figure 12. VDE parameter scan. Ratio of normalized net sideways
force acting on vacuum vessel, F̂h, to normalized net vertical force,
F̂v, versus normalized initial plasma beta, β̂0, for VDE simulations
shown in figure 10.

Figure 13. VDE parameter scan. Normalized peak vertical force
density parameter, F̂v Tφ , versus normalized initial toroidal plasma
current, Îφ p 0, for VDE simulations performed with a range of
different β̂0 and τ values. The other simulation parameters are
ε = 0.3, κ0 = 1.5, qp 0 = 3.0, δ̂0 = 0.05, pκ = 0., pβ̂ = 0.,
pI = 0.2, p′

β̂
= 100.0, p′

I = 5.0, and 5c = 0.5. The open triangles,
open squares, open circles, filled triangles and filled squares
correspond to τ = 0.0625, 0.125, 0.25, 0.5 and 1.0, respectively.

7. Summary

We have developed an essentially analytic model of a
nonaxisymmetric VDE in a vertically elongated tokamak
plasma. The model employs a large aspect-ratio, high-beta (i.e.
β ∼ ε), sharp-boundary plasma equilibrium (see section 2)
in which the perturbed edge pressure balance is modified in
response to the halo current force exerted on the section of
the vacuum vessel that is in direct electrical contact with
the main plasma (see section 4). Moreover, the angular
boundaries of this plasma-touching section are determined
self-consistently from the calculated amplitudes of the n = 0
and the n = 1 plasma displacements (see section 5.6). Finally,
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the halo current is determined from circuit analysis using
driving inductive voltages obtained from the calculated linear
growth rates of the n = 0 and the n = 1 modes (see section 3).

We have used our model to simulate nonaxisymmetric
VDEs with a wide range of different plasma equilibrium and
vacuum vessel parameters (see section 6). These simulations
yield toroidal peaking factors and poloidal halo current
fractions whose magnitudes are similar to those observed
experimentally [7–9], and also reproduce the characteristic
inverse scaling between the peaking factor and halo current
fraction [7–9]. In addition, the peak halo current density
in the vacuum vessel is found to vary as the reciprocal of
the minimum edge safety factor reached during the VDE.
Moreover, under certain circumstances, the net sideways acting
force acting on the vessel, expressed as a fraction of the net
vertical force, is observed to approach unity. Finally, the peak
vertical force density in the vacuum vessel correlates strongly
with the toroidal plasma current at the onset of the VDE, but
also increases with increasing vacuum vessel resistivity relative
to the SOL plasma. Some of the results of our simulations—
in particular, the findings that the vessel forces are larger for
more unstable plasmas, and generally increase with increasing
vessel resistivity—are consistent with those recently obtained
by Paccagnella, Strauss et al [21–23].

Note that our model depends crucially on the assumption
that the normal plasma velocity is non-zero wherever the main
plasma touches the wall [18]. Indeed, if this were not the
case then it would be impossible for the halo current force
to moderate the n = 0 and n = 1 instabilities, and so to
convert them from modes growing on the Alfvén time to modes
growing on the much longer L/R time of the vacuum vessel
or the SOL plasma.

One effect which is absent from our model is the
moderating influence of eddy currents flowing in that part
of the vacuum vessel which is remote from the plasma once
significant shrinkage of the plasma poloidal cross-section has
taken place. On the other hand, eddy currents flowing in the
part of the vacuum vessel that is either touching the plasma, or
is in close proximity to it, are taken into account in the model.
Generally speaking, we would expect the latter currents to play
a more important role in VDEs than the former.

Finally, our model tacitly assumes that the inductive
electric fields generated during a typical VDE are sufficiently

large to cause the breakdown of any sheaths at the
plasma/limiter boundary, and, consequently, that the halo
current is not limited by the ion polarization current.
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